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Abstract.—Precautionary fishery management requires that a distinction be made

between target and limit reference points. We present a simple probability framework

for deriving a target reference point in fishing mortality rate F or biomass B from the

corresponding limit reference point. Our framework is a generalization of one devised

previously.1 Both methods require an a priori management decision on the allowable

probability of exceeding the limit reference point; our new method removes a major

assumption by accounting for uncertainty in the limit reference point. We present

theory of the method, an algorithm for solution, and examples of its application. The

new procedure, like the old, requires an estimate of implementation uncertainty

expected in the following year’s management, an estimate that might be obtained by a

review of the effectiveness of past management actions. Either method can be

implemented easily on a modern desktop computer. Our generalized framework is

more complete and we believe that it has wide applicability in the use of fishery

reference points, or for that matter in other conservation applications that strive for

resource sustainability.

Copyeditor: We have included a citation in the abstract, as our work is a direct

extension of the cited work. Although this differs from usual AFS style, C. Mose-

ley advises an exception might be possible in this case. Thank you. —Authors.

1Caddy, J. F., and R. McGarvey. 1996. Targets or limits for management of fisheries?

North American Journal of Fisheries Management 16:479–487.
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In recent years, precautionary management of fisheries (e. g., FAO 1995) has

become well established. In defining and implementing precautionary management, the

concepts of limit reference point and target reference point have been found useful by

scientists and managers (Smith et al. 1993; Mace 1994; Caddy 1998). These concepts

were promoted by the United Nations Conference on Straddling Fish Stocks and Highly

Migratory Fish Stocks (United Nations 1995) and the U.N. Code of Conduct for

Responsible Fishing (Caddy and Mahon 1995). In simple terms, a limit reference point

(LRP) reflects the perceived maximum degree of safe exploitation for a stock. It is

implicit that an LRP should rarely be exceeded (Mace and Sissenwine 2002). Depending

on the assessment and management techniques in use, an LRP can be expressed in

terms of fishing mortality rate F , stock biomass B, spawning-stock biomass SSB, or

other metrics of exploitation rate or stock abundance. (Symbols and abbreviations used

in this paper are defined in Table 1.) A target reference point (TRP) uses the same

metric as the corresponding LRP and defines the degree of exploitation aimed for under

management. When reference points are measured in F , the preceding definitions imply

that TRP < LRP; when reference points are in B or SSB, they imply that TRP > LRP. Stock

assessment and management are uncertain, and the difference between TRP and LRP

constitutes a margin of safety that prevents frequent excursions of exploitation beyond

the LRP and thus promotes sustainability (Mace 2001).

In the United States, recent changes introduced by the Sustainable Fisheries Act

have introduced a precautionary approach to fishery management at the federal level

(Magnuson–Stevens Act Provisions 1998). Technical guidelines (Restrepo et al. 1998)
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issued to implement that act suggest methods for computing reference points in B and

F and corresponding control rules. Thus, use of reference points in U.S. marine fishery

management has become widespread and is likely to continue. In U.S. technical and

regulatory documents, (e. g., Restrepo et al. 1998), LRPs are often called thresholds.

When establishing reference points, how one chooses among competing models is

a very broad question, one whose answer will depend on the nature of the resource and

the fishery. Here we explore a different, but nonetheless important, question: Given an

LRP, how can the corresponding TRP be computed? Implicit in that question is the

assumption that management can decide on a suitable TRP—e. g., FMSY (the fishing

mortality rate associated with maximum sustainable yield) or a minimum

spawning-stock threshold—and that suitable assessment models can provide a working

estimate of its value.

The Caddy–McGarvey Framework for Setting a TRP

One approach for computing a TRP corresponding to a specified LRP was

provided by Caddy and McGarvey (1996), who based their argument on simple

statistical theory. They assumed the TRP is the central tendency of a probability density

function (pdf) that describes the uncertain outcome of a given set of management

actions. They then showed that, if the shape of the pdf is known, the TRP can be

calculated from an acceptable probability P∗ of exceeding the LRP.

Caddy and McGarvey (1996) developed the mathematical representation of their

methodology (which we denote as CM) using fishing mortality rate F as the management
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control variable. Ambiguously, they used the symbol Fnow to refer to both the target

reference point in F , which is a fixed number, and the current fishing mortality rate,

which is a quantity estimated with uncertainty. Here we distinguish those two concepts

by using Fτ to represent the target reference point and Fnext for the realized fishing

mortality rate in the management period, typically the next year. In our notation, the

CM framework is represented as

Pr(Fnext > Fλ) =
∞∫
Fλ

pdfFnext
(F)dF = P∗, (1)

where Pr(x) is the probability of condition x; Fλ is the limit reference point in F ; and

pdfFnext
(F) is the pdf of Fnext evaluated at F .

Caddy and McGarvey’s assumption that pdfFnext
(F) is centered on the TRP implies

a belief that implementation of the TRP, although imprecise, is accurate. Consequently,

when Fτ is increased or decreased, the probability Pr(Fnext > Fλ) increases or decreases

accordingly so that some particular value of Fτ provides the desired probability P∗

(Figure 1).

Solution of CM Framework for TRP

The solution of equation (1) for Fτ is completed in two steps. First, one must

specify the pdf of Fnext and estimate or assume its parameters. Second, one must use a

solution algorithm to find the value of Fτ corresponding to the desired P∗. If in the first

step the pdf is normal or lognormal, then its location parameter (mean or median) will

be based on Fτ and only its dispersion parameter (SD of Fnext around Fτ ) will remain to
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be specified. For example, if Fnext is normally distributed with mean Fτ and standard

deviation σFnext , equation (1) becomes

Pr(Fnext > Fλ) =
∞∫
Fλ

1√
2πσFnext

exp

(
−(F − Fτ)

2

2σ2
Fnext

)
dF = P∗. (2)

In the CM framework, the acceptable probability level P∗ has been established by

managers; the LRP Fλ is assumed available from assessment results; and σFnext is

assumed estimable by some systematic or ad hoc method, as discussed later. The only

unknown is the value of Fτ that will make the equation true.

To effect the second step of the solution, equation (2) can be solved for Fτ by

evaluating the integral at successive trial values of Fτ until a value is found that satisfies

the equation. The trial values are chosen in a systematic way; e. g., by the bisection

method (Gill et al. 1981). Although the integral has no explicit solution, numerical

methods of integration are easily within the capability of modern computers.

Because the integral in equation (2) must be evaluated numerically, finding the

solution value of Fτ is an iterative process. A simpler approach is to use an

approximation of the inverse–normal function Z−1 (e. g., Adams 1969). For a random

variable x ∼ N(0,1), the inverse–normal function is defined

Z−1(π) ≡ z such that Prob(x < z) = π (3)

Given the ability to compute the inverse–normal function, it is possible to compute the

expected TRP directly as
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Fτ = Fλ
1+ CVFnext · Z−1(1− P∗) . (4)

Similarly, if Fnext is lognormally distributed, one may compute the median TRP as

Fτ = Fλ
exp

[
σFnext · Z−1(1− P∗)] . (5)

In equation (4), we use the coefficient of variation (CV) of the TRP rather than its SD, but

of course the two are interchangeable by the relationship CV = SD/mean. In a specific

example of this approach, Caddy and McGarvey (1996) gave numerical approximations

from which Fτ could be computed, assuming normal uncertainty in Fnext and given

σFnext , Fλ, and P∗.

Generalization of CM for Uncertainty in Limit Reference Point

The CM approach is attractive for several reasons. Chief among them are that it

recognizes uncertainty in the TRP; it is conceptually simple and thus easily

communicated; and it is based on an explicit probability framework, rather than

completely ad hoc reasoning. Importantly, specification of P∗ by managers emphasizes

the nonscientific dimension of setting a target.

The most obvious limitation of the CM framework is that it assumes zero

variability in the LRP. That assumption is not realistic, because any estimate of a limit

reference point (whether measured in F , B, or other metric) is derived from imprecise

data and thus is imprecise itself. It is not difficult to generalize the preceding
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framework to account for imprecision in Fλ as well as in Fτ . The more general form of

equation (1) is

Pr(Fnext > Fλ) =
∞∫
−∞

Pr(Fnext > F) · Pr(Fλ = F)dF, (6)

or equivalently,

Pr(Fnext > Fλ) =
∞∫
−∞

[
1− cdfFnext(F)

] · pdfFλ(F)dF, (7)

where the cumulative distribution function cdfFnext(F) may require integration or

numerical approximation. Equations (6) and (7) can be interpreted as summing

weighted averages of the CM method across all possible values of Fλ, the statistical

weights being the relative probabilities of observing that value of Fλ. The generalization

assumes that uncertainty in Fnext and uncertainty in Fλ are independent, an assumption

that is relaxed later.

We illustrate our generalized framework using two hypothetical examples that

differ only in location parameter (mean or median) of the TRP (Figures 2 and 3). The

figures parallel equation (7): in each figure, the uppermost plot shows 1− cdfFnext(F),

the center plot shows pdfFλ(F), and the lowermost plot shows the product of the two,

i. e., the full integrand in equation (7). Area under the lowermost curve is Pr(Fnext > Fλ).

Comparison of the two figures reveals that, as expected, the probability of exceeding

the LRP becomes lower as the TRP is reduced from Fτ = 0.4 (Figure 2) to Fτ = 0.3

(Figure 3). A similar reduction would occur if the LRP were made higher or the SD of
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either the TRP or LRP were reduced.

When statistical distributions for Fnext and Fλ are known or estimated, equation

(7) can be written in a more explicit form. Assuming normal distributions, for example,

the new equation is

Pr(Fnext > Fλ) = 1
2πσFnextσλ

∞∫
−∞

∞∫
F

exp

(
(φ− Fτ)2

2σ2
Fnext

)
dφ

 exp

(
(F − Fλ)2

2σ2
λ

)
dF (8)

where σFnext is the standard error of Fnext, and σλ is the standard error of Fλ. Given a

value of P∗ chosen by managers and estimates of σFnext , σλ, and Fλ, equation (8) can be

solved for Fτ . The double integral here can be more time-consuming to compute than

the single integral in equation (2), and the possibility of a direct solution based on an

approximation for Z−1 is no longer available (although approximation of Z−1 for the

inner integral can be used to speed the computations). The only additional data

requirement of the generalized framework is an estimate of σλ.

With minor adjustments, the same approach can be used for lognormally

distributed uncertainty. It can also be adapted to other continuous distributions, as

long as their density and distribution functions can be characterized from the

information at hand and then evaluated analytically or numerically.

For simplicity, we have assumed above that uncertainties in Fnext and Fλ are

independent. That assumption is convenient, but not necessary. It is possible that the

two quantities are correlated, as they are estimated from the same data and assessment

framework. In that case, one could estimate the joint probability density of Fnext and Fλ
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(e. g., a bivariate normal distribution) and integrate it over the appropriate region. We

suspect, however, that in practice correlation between the two quantities will be low

owing to the large implementation uncertainty in Fnext, which is quite separate from the

estimation uncertainty involved in finding Fλ, and that as a consequence, equation (7)

will be applicable. We next present an approach that further reduces the possibility of

correlation between Fnext and Fλ.

Ratio–Extended Probability Approach to Setting Targets (REPAST)

From the generalized framework described above, we now develop a variant that

appears well suited to application in fishery management, while avoiding the main

source of correlation between Fnext and Fλ. Because this variant is based on

dimensionless quantities that can be written as ratios, we call it REPAST, for

Ratio–Extended Probability Approach to Setting Targets. The REPAST framework was

developed while considering properties of FMSY as estimated from surplus–production

models, and we explain it in that context. Nonetheless, we believe that analysts will find

it applicable to other LRPs and assessment procedures as well.

As in many quantitative problems, progress can be made by replacing important

variables with related dimensionless (scale-independent) quantities (Barenblatt 1996).

In fishery science, the scale-independent approach has been used, for example, in

developing the concept of spawning potential ratio (Goodyear 1993). Estimates of

population state Bt and Ft at time t from a surplus–production model are more precise

when expressed as dimensionless proportions of BMSY and FMSY, respectively, rather
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than in specific units of mass and time−1 (Prager 1994). In dimensionless form, the

estimates no longer incorporate information on the catchability coefficient q, which is

often poorly estimated. Indeed, determining the exact scale of a population (equivalent

to determining q) is one of the most difficult problems in population dynamics (Smith

1994). An additional reason for preferring the dimensionless estimates is that the

effects of bias and error in the sampling program will tend to cancel. For example, if

only a consistent fraction of the population is sampled, the usual (scaled) estimate of Bt

will be biased, but the dimensionless estimate will be unaffected.

It follows that the limit reference point Fλ, in this context equated to FMSY, can be

expressed with greater precision as a ratio to current (final-year) fishing mortality rate

than it can be in absolute terms. We designate that ratio Rλ, defined here as

Rλ = FMSY/Fnow and more generally as Rλ = Fλ/Fnow. The quantity Rλ is a dimensionless

LRP, known with statistical error. It should be a routine matter to estimate Rλ from an

assessment model, and almost as routine to obtain an estimate of its standard error or

coefficient of variation.

Management of fishing mortality rate is also usually effected in a relative sense (as

is management based on total stock biomass). By that, we mean that target fishing

mortality rate in the next period Fτ is generally set by proportional adjustment to the

current fishing mortality rate Fnow, rather than by some totally new analysis of fishing

power, fishing effort rate, etc. For the desired adjustment, we use the notation Rτ ,

defined such that Fτ = Rτ · Fnow. Thus the quantity Rτ is a dimensionless TRP, taking

the form of a multiplier that will be implemented with statistical error. We assume as
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before that the multiplier actually achieved, Rnext, is uncertain and can be described by

a pdf centered on the desired TRP Rτ . Despite the transformation into dimensionless

quantities, the method of attack remains the same. Computing the probability that

Fnext > Fλ is essentially the same as computing the probability that Rnext > Rλ. Equation

(7) becomes

Pr(Rnext > Rλ) =
∞∫
−∞

[
1− cdfRnext(R)

] · pdfRλ(R)dR, (9)

which can be solved for the value of Rτ that will produce the allowable probability P∗

that Rnext > Rλ. The solution is possible when pdf of Rnext and pdf of Rλ are known or

estimated. As with the CM method, any distributions can be specified, including

empirical distributions.

Although conceptually REPAST is almost identical to our non-ratio-based

generalization, there are two advantages of using dimensionless reference points. First,

uncertainty in the dimensionless quantities should generally be less than in the original

reference points, because the problem of scaling the population is avoided. Second,

correlation between uncertainty in achieving the target and uncertainty in estimating

the LRP is greatly reduced. As mentioned above, even the scaled quantities Fnext and Fλ

should be uncorrelated, because their major uncertainties stem from independent

processes; uncertainty in Fnext largely reflects imperfect implementation of regulations,

while uncertainty in Fλ reflects estimation and sampling error. In practice, however,

error in the two quantities will be correlated if there is an overall bias to the sampling

regime. In contrast, uncertainty in the dimensionless quantity Rnext depends only on
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implementation, not on sampling, and thus Rnext will be uncorrelated with Rλ—except,

perhaps, to the degree that compliance with regulations is correlated with their severity.

Whether the calculations are done in terms of scaled or dimensionless reference

points, the best method of characterizing implementation uncertainty is not obvious.

An ad hoc approach might be to postulate a provisional value by assuming a CV on

Rnext. A more empirical approach would be to estimate uncertainty from data on past

performance of the fishery. By analyzing past intended management of F and results

obtained, it should be possible to estimate the CV of Rnext. An example of data-based

modeling of such partial management control of a wild population is provided by

Johnson et al. (1997).

Examples

Three examples follow. The first demonstrates the similarities and differences

between the CM procedure and REPAST. The second and third apply REPAST to

swordfish Xiphias gladius in the north Atlantic Ocean; in these examples, TRPs in fishing

mortality rate and biomass are based on estimates, from a surplus–production model,

of the CV of FMSY. The applications to swordfish are intended strictly as examples and

do not provide definitive information on that stock.

Example 1—Comparison to Caddy–McGarvey Procedure

In this example, we reexamine a case given in Caddy and McGarvey (1996) and

recompute it using the REPAST generalization. The example is based on three
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assumptions: (1) The dimensionless limit reference point Rλ = Fλ/Fnow = 0.6. That is,

present fishing mortality rate is higher than the established LRP by the factor

1/0.6 ≈ 1.67. (2) Implementation of the dimensionless target reference point Rτ is

uncertain and characterized by the CV of Rnext. (3) To make our numerical results

directly comparable to the example of Caddy and McGarvey (1996), we assume

Fnow = 1.0/yr. In that case, by definition Fλ = Rλ/yr and Fτ = Rτ/yr.

If Rλ is specified as a point value, the example is the same as that of Caddy and

McGarvey (1996). Resulting values of the target reference point Rτ are given in Table 2

for a range of P∗ and CV of Rnext. That table is more detailed than Table 1 of Caddy and

McGarvey (1996) and also corrects an apparent error, their value of Fτ = −0.04/yr for

P∗ = 0.05 and CV= 1.00, but otherwise displays the same values.

We next assume, more realistically, that the dimensionless LRP Rλ is estimated

with error (CV = 0.25), and we use REPAST to compute Rτ accordingly. The result is a

slightly lower target at each combination of P∗ and CV of Rnext (Table 3). The values of

Rτ are perhaps most informative when presented as a contour plot (Figure 4 a–b), as are

the difference between procedures (Figure 4 c–d). Those differences are largest when CV

of Rnext is low, because then uncertainty in the limit reference point Rλ becomes more

important.

Example 2—North Atlantic Swordfish

In this example, we apply REPAST to results from a surplus–production model,

using FMSY as the limit reference point (Mace 2001). Prager (2002) examined several

aspects of production modeling of swordfish in the north Atlantic Ocean, based on
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catch and relative-abundance data for 1950–1998. Prager’s analysis using a trimmed

least-squares fit of the generalized production model provides an estimate of

Rλ = FMSY/F1998 = 0.814. We repeated that production–model analysis, adding a

bootstrap, as in Prager (1994), to generate an empirical sampling distribution of Rλ

(Figure 5). That distribution implies a variability around Rλ of CV = 0.263. Because the

normal distribution appears a good approximation (Figure 5), we assume normality for

this example.

Using Rλ = 0.814 with CV = 0.263, we solve equation (9) for the TRP over a range

of P∗ and CV of Rnext (Figure 6). For example, at P∗ = 20% and CV = 0.25, the TRP is

Rτ = 0.60, meaning that the appropriate target fishing mortality rate in the next period

is 60% of current F . In general, with lower P∗ or higher CV of Rnext, the value of Rτ

decreases.

Example 3—Reference Point in Biomass

This example is based on the same surplus–production model of swordfish, but

differs by considering reference points in stock biomass, rather than in fishing mortality

rate. For the sake of the example, we assume that the LRP in biomass is Bλ = 0.75BMSY,

the value suggested as a possible minimum stock-size threshold in Restrepo et al.

(1998). We use the same notation as before, but here Rλ = Bλ/Bnow and Bτ = Rτ · Bnow,

the distinction between dimensionless reference points in biomass and those in fishing

mortality rate being clear from context. The point estimate of Rλ in biomass from the

production model is 1.06, while in this case the bootstrap distribution of Rλ is

characterized by a CV of 0.189. Again, the distribution appears close to normal (Figure
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7), so the normal assumption is used in applying REPAST. Because of the change in

reference points from F to B, the following replaces equation (9):

Pr(Rnext < Rλ) =
∞∫
−∞

[
cdfRnext(R)

] · pdfRλ(R)dR. (10)

The important point is the reversed inequality on the left-hand side of the new

equation, reflecting TRP > LRP when the reference is biomass.

As with the previous example, results are presented as a contour plot (Figure 8).

We choose the same point to exemplify the results; namely, P∗ = 20% and CV = 0.25.

The estimate is that, given the stated LRP, the target must be at least 140% of Bnow

(Figure 8). In general, Rτ increases with lower P∗ or higher CV of Rnext.

Discussion

We have described a simple framework for computing target reference points

from limit reference points, a framework based on the work of Caddy and McGarvey

(1996) but incorporating two major extensions. First, it allows for uncertainty in

estimation of the limit reference point, and thus provides a more accurate picture of

reality than the old procedure. Because the magnitude of that uncertainty can be

estimated routinely by modern assessment models, the added data burden for this

extension is small. Because that uncertainty is not assumed negligible, targets figured

by the new procedure are somewhat more conservative than from the old procedure.

The second refinement is casting our framework in terms of dimensionless
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indicators of stock status. While at first that approach may seem more complex, we

believe that it has advantages. It recognizes that management is usually applied by

adjusting present fishing regimes; it takes advantage of the cancellation of sampling

errors in estimated quantities, thus improving precision; and it reduces concern about

the possible correlation of errors in the LRP and the realized target. By increasing

precision, the use of dimensionless quantities may allow higher exploitation rates than

a similar procedure using scaled values.

The disadvantages of our new procedure are that it is slightly more difficult

conceptually than the original and that the computations are a bit more complex. We

hope that our explanations have mitigated the first disadvantage and that free

availability of software for the procedure (explained below) will mitigate the second.

Statistical Issues

A potential concern about dimensionless reference points is that, as ratios, they

may have undesirable statistical properties. Indeed, the ratio of a constant to a

normally distributed random variable (for example) has a
⋃

-shaped distribution that

would be unsuitable for use with REPAST. Furthermore, it is frequently recommended

that proportions, another type of ratio, be transformed before analysis (Snedecor and

Cochran 1980). In contrast, ratio estimates are recommended as more precise than

estimates of individual quantities when correlation between numerator and

denominator of the ratio is high (Snedecor and Cochran 1980), as it should be in the

ratios Rλ ≡ Fλ/Fnow and Rτ ≡ Fτ/Fnow. For example, ratio estimators are recommended

by Snedecor and Cochran (1980, p. 456) for estimating relative population sizes over
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time, a use reportedly introduced by Laplace in the early 1800s (Rao 1986). Thus, the

use of dimensionless quantities (ratios) in REPAST appears statistically well founded. In

addition, we note that the basic equations of surplus–production models involve not

biomass itself, but biomass as a dimensionless ratio to carrying capacity (e. g., Fletcher

1978; Prager 1994; Quinn and Deriso 1999). For a fixed production–model shape (i. e., a

fixed exponent in the generalized production equation), that is fundamentally the same

dimensionless approach we have taken. In that sense, dimensionless estimates are more

fundamental products of production models than the corresponding scaled estimates.

As noted above, scaling is a major source of uncertainty even in more complex

population models (Smith 1994).

When the CV of Fnext is relatively large, as in the first example, and variability is

assumed to be distributed normally, a noticeable portion of the distribution of Fnext may

lie below zero. There are two strategies for responding to this situation. One can either

assume that all negative values of Fnext are equivalent to F = 0, or one can renormalize

the portion of the density function over the range 0 < F <∞ so that its integral is unity.

The value of the TRP provided by our methods will depend on which strategy is used. In

our examples, we used the first strategy, but we have no strong preference for one or

the other. We do think that once a choice is made, it should be maintained in future

assessments of the stock. We view the value of our methods not as providing TRPs that

precisely match the chosen P∗, but rather as providing repeatable, objective, statistically

based TRPs that approximate the chosen P∗. If neither strategy is acceptable, the entire

issue can be avoided by using the equations for lognormally distributed uncertainty.
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Reference Points in Biomass

The examples illustrate a structural difference between reference points in

biomass and those in fishing mortality rate. In the latter, the LRP is often set at an

estimate of (or proxy for) FMSY, and for that reason, the nearer the applied fishing

mortality is to the LRP, the higher the sustainable yield. The REPAST procedure

provides in that sense an optimal fishing mortality rate within the constraints of P∗.

The LRP in biomass, in contrast, is usually set lower than BMSY. Driving stock levels as

near as possible to such an LRP would be a risk–prone approach that also reduced the

sustainable yield. Therefore, we suggest that when using REPAST to compute reference

points in biomass, the TRP be set to the computed value only if it would result in

Bτ ≥ BMSY, to BMSY otherwise.

The application of the CM approach or our generalizations of it to biomass–based

TRPs is subtly different from its application to F–based TRPs in that biomass is not

directly controlled by managers. Except where stocking is used, managers can increase

the population only indirectly, by implementing rules to reduce F , and thus provide a

larger stock biomass at some future time. This implies an added source of uncertainty,

associated with the time it takes for the biomass to increase to the reference point. In

principle, this aspect of the problem could be made transparent to managers through a

model of the added uncertainty; such a model would describe the probability density of

achieving Bλ (or Rλ) within a prescribed time.
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Setting P∗

As noted by Shotton (1993), the probability P∗ of exceeding the limit reference

point acceptable to managers will depend on their aversion to risk. If relatively risk

prone, they may choose, e. g., P∗ > 0.1 for use with these methods. If more risk averse,

they will tend to choose a lower probability of exceeding the LRP. Whatever the case, P∗

is not a result, as in many approaches, but instead must be specified a priori to arrive at

a target. We believe it is important that specification of this probability be recognized

for the political (i. e., management) decision it is, and neither relegated to science, which

cannot answer it, nor swept under the rug. Thus, we view the need to set P∗ explicitly

and a priori as a strength of the methods described here.

It is possible, nonetheless, that science can aid managers in determining a value

of P∗ that is optimal in some sense. Formal risk analysis provides a framework for

quantifying risk, defined in that context as the mathematical expectation of loss from a

policy. Thus, computer simulation of the stock’s biology, management, and fishery

could be used to calculate the risk (in that sense) associated with any value of P∗, and

the value of P∗ with lowest risk could be considered optimal. Such an approach is quite

objective, yet it does not completely eliminate the subjective nature of setting P∗, as it

makes necessary placing values on socioeconomic events such as fishery closures,

changes in catch per effort, greater or lesser variability of annual catch, and recreational

and aesthetic factors. Nonetheless, the focus of such a procedure is quite different from

setting P∗ empirically, and the approach could be useful, given the economic data and

assumptions needed.
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Reference Points, Implementation, and Data Collection

Application of CM or REPAST is in essence a control rule, in the sense of Restrepo

et al. (1998), for management of fisheries. Like other approaches in which added

precision in estimates of stock status yields a smaller margin between target and limit,

use of REPAST makes evident the returns expected from expenditures on collecting

relevant data (whether fishery-dependent or fishery-independent), because the quality

of data will determine the variance in the estimation of the LRP used. As noted by

Caddy and McGarvey (1996), an important consequence of this is that with a higher

level of expenditure on monitoring, the same probability of exceeding the limit

reference point occurs at a slightly higher rate of fishing than under the higher

variability in LRP coming from less intensive monitoring. This makes explicit what was

only implicit previously, namely that statistical monitoring has an economic value to the

fishing industry. Similarly, the value of enforcement and compliance become more

apparent, as they serve to reduce implementation uncertainty (variability in Rnext),

which also can reduce the required margin between target and limit.

The methods described here (including the CM method) assume explicitly that a

target, once adopted, will be met on average. Experience suggests, however, that quotas

(e. g.) are much more likely to be exceeded than underrun. From the scientific

perspective, there is no reason that the statistical distribution of Fnext must be centered

on the target, as we have assumed. Any of the methods described can easily

accommodate distributions centered at any point. Therefore, any of the methods is

easily extended to allow for expected overruns. In such applications, the central
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tendency and dispersion of Fnext or Rnext might be estimated from data on performance

of the fishery, as we suggested that the dispersion alone might be. In applying such

estimates, it might be desirable to use a running average of (e. g.) the last few years’

performance, so that changes in implementation effectiveness would be reflected in the

new targets.

Application in Management

How can methods like REPAST best be used in ongoing fishery management? We

suggest that they must be applied repeatedly, because monitoring and assessment

techniques change over time, as does the status of the stock itself. The limit reference

point is most usefully set as a theoretical quantity, e. g., FMSY, rather than as a specific

value of F or B, as formalizing a specific number often leads to difficulties when

assessment methods change, or even as knowledge about the stock increases. The

acceptable probability P∗ of overshooting the LRP can also be established before

assessment takes place. For application of REPAST, stock assessment results should

include estimates of the relative LRP and its CV. A complementary analysis of the

fishery’s past performance can be used to estimate implementation uncertainty in

management measures (e. g., uncertainty in Fnext). From those estimates, REPAST is used

to compute a relative TRP for the following period. The time of assessment would also

be an excellent time for bioeconomic analyses, based on REPAST, of costs and benefits

of reducing uncertainty. The possible extra yield from reduced estimation uncertainty

is balanced against costs of better stock monitoring and assessment, which lower

variability in the LRP, and against costs of better enforcement and fishery monitoring,
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which lower variability in implementing the TRP. In summary, at each assessment cycle,

REPAST allows the computation of targets from stock and fishery status, and the

opportunity to balance possible larger yields against the costs needed to attain them.

It is a property of all estimation schemes for fish and wildlife conservation,

including estimates of reference points, that they are merely advisory. Remedial action,

if needed, must be undertaken by other means: law, regulation, or other agreement. The

value of reference points, it seems to us, is in establishing a framework within which

such agreements can be made and, in the case of the methods proposed here, a logical

method for determining the magnitude of adjustments that can be agreed upon. Thus

such methods, if accepted with some fidelity, seem capable of furthering conservation

management considerably.

Software

The authors have developed Fortran software implementing the REPAST scheme.

Software, including source code, will be made available freely to colleagues requesting

it. For software, contact M. H. Prager by email: mike.prager@noaa.gov.
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Table 1.— Abbreviations and mathematical symbols.

Symbol Description

CM Method of Caddy and McGarvey (1996) for finding a TRP from a precise

LRP

CV Coefficient of variation; standard deviation divided by mean

REPAST Our method (extension of CM) for finding a TRP from an imprecise LRP

LRP Limit reference point, in general

MSY Maximum sustainable yield

TRP Target reference point, in general

pdf Probability density function

cdf Cumulative distribution function (integral of pdf)

F Instantaneous rate of fishing mortality

B Biomass of stock

Fλ, Bλ Value of F or B chosen to implement LRP

Fτ , Bτ Value of F or B chosen to implement TRP

Fnow, Bnow Estimated F or B at the close of the last observed period (typically, year

just ended)

Fnext, Bnext Realized F or B in the management period (typically, next year)

FMSY, BMSY Value of F or B at which MSY can be realized

Rλ LRP in F or B expressed relative to Fnow or Bnow

Rτ TRP in F or B expressed relative to Fnow or Bnow

P∗ Allowable probability of exceeding LRP in next management period

φ Dummy variable used in double integration

σλ,σFnext Standard error of LRP, standard error of TRP
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Table 2.— Example with unitless limit reference point Rλ = FMSY/Fnow = 0.6, using

CM method (Rλ assumed precise). Values are of unitless target reference point Rτ

that provide specified probabilities P∗ of exceeding LRP in next period, as a function

of CV of Rnext. Abbreviations and symbols are defined in Table 1.

CV of Rnext

P∗ 0.05 0.10 0.15 0.20 0.25 0.33 0.50 0.66 0.80 1.00

Normal distribution of uncertainty—values are means

50% 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

40% 0.59 0.59 0.58 0.57 0.56 0.55 0.53 0.51 0.50 0.48

35% 0.59 0.58 0.57 0.56 0.55 0.53 0.50 0.48 0.46 0.43

30% 0.58 0.57 0.56 0.54 0.53 0.51 0.48 0.45 0.42 0.39

25% 0.58 0.56 0.54 0.53 0.51 0.49 0.45 0.42 0.39 0.36

20% 0.58 0.55 0.53 0.51 0.50 0.47 0.42 0.39 0.36 0.33

15% 0.57 0.54 0.52 0.50 0.48 0.45 0.40 0.36 0.33 0.29

10% 0.56 0.53 0.50 0.48 0.45 0.42 0.37 0.33 0.30 0.26

5% 0.55 0.52 0.48 0.45 0.43 0.39 0.33 0.29 0.26 0.23

Lognormal distribution of uncertainty—values are medians

50% 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

40% 0.59 0.59 0.58 0.57 0.56 0.55 0.53 0.52 0.50 0.49

35% 0.59 0.58 0.57 0.56 0.55 0.53 0.50 0.48 0.46 0.44

30% 0.58 0.57 0.55 0.54 0.53 0.51 0.47 0.44 0.41 0.39

25% 0.58 0.56 0.54 0.52 0.51 0.48 0.44 0.40 0.37 0.34

20% 0.58 0.55 0.53 0.51 0.49 0.46 0.40 0.36 0.33 0.30

15% 0.57 0.54 0.51 0.49 0.46 0.43 0.37 0.32 0.29 0.25

10% 0.56 0.53 0.50 0.47 0.44 0.40 0.33 0.28 0.24 0.21

5% 0.55 0.51 0.47 0.43 0.40 0.35 0.28 0.22 0.19 0.15
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Table 3.— Example with unitless limit reference point Rλ = FMSY/Fnow = 0.6, using

REPAST method with 25% CV of Rλ. Values are of unitless target reference point Rτ

that provide specified probabilities P∗ of exceeding LRP in next period, as a function

of CV of Rnext. Abbreviations and symbols are defined in Table 1.

CV of Rnext

P∗ 0.05 0.10 0.15 0.20 0.25 0.33 0.50 0.66 0.80 1.00

Normal distribution of uncertainty—values are means

50% 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

40% 0.56 0.56 0.56 0.55 0.55 0.54 0.52 0.51 0.49 0.47

35% 0.54 0.54 0.53 0.53 0.52 0.51 0.49 0.47 0.45 0.43

30% 0.52 0.52 0.51 0.51 0.50 0.48 0.46 0.43 0.41 0.38

25% 0.50 0.49 0.49 0.48 0.47 0.46 0.42 0.40 0.37 0.35

20% 0.47 0.47 0.46 0.45 0.44 0.43 0.39 0.36 0.34 0.31

15% 0.44 0.44 0.43 0.42 0.41 0.39 0.36 0.33 0.30 0.28

10% 0.41 0.40 0.39 0.38 0.37 0.36 0.32 0.29 0.27 0.24

5% 0.35 0.35 0.34 0.33 0.32 0.30 0.27 0.24 0.22 0.20

Lognormal distribution of uncertainty—values are medians

50% 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

40% 0.56 0.56 0.56 0.55 0.55 0.54 0.52 0.51 0.50 0.48

35% 0.54 0.54 0.54 0.53 0.52 0.51 0.49 0.47 0.45 0.43

30% 0.53 0.52 0.52 0.51 0.50 0.49 0.45 0.43 0.41 0.38

25% 0.51 0.50 0.49 0.48 0.47 0.46 0.42 0.39 0.36 0.33

20% 0.49 0.48 0.47 0.46 0.45 0.43 0.38 0.35 0.32 0.29

15% 0.46 0.46 0.45 0.43 0.42 0.39 0.35 0.31 0.28 0.24

10% 0.43 0.43 0.41 0.40 0.38 0.36 0.30 0.26 0.23 0.20

5% 0.40 0.39 0.37 0.36 0.34 0.31 0.25 0.21 0.18 0.14
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Figure Captions

Figure 1. Diagram of CM procedure, showing relationship of limit reference point Fλ,

assumed variability of Fnext, allowable probability P∗ that Fnext > Fλ, and resulting

target reference point Fτ . Abbreviations and symbols are defined in Table 1.

Figure 2. Diagram 1 of generalized procedure, showing graphically the relationship of

terms in equation (7). Coefficient of variation of TRP and of LRP are 25%. Abbreviations

and symbols are defined in Table 1.

Figure 3. Diagram 2 of generalized procedure. Same as previous figure except that TRP

has been reduced. Note reduced probability that Fnext > LRP. Abbreviations and

symbols are defined in Table 1.

Figure 4. Panels (a) and (b): contours of Rτ , dimensionless target reference point in F

expressed as a proportion of current F . Contours depend on allowable probability P∗ of

exceeding Rλ, the dimensionless limit reference point in F ; value of Rλ (x–axis);

estimated mean and CV of Rλ (here assumed 0.6 and 0.25, respectively); and CV of Rnext

(y–axis). Panel (a) assumes normal, and panel (b) lognormal, uncertainty. Panels (c) and

(d): corresponding increase in estimates of Rτ when using procedure of Caddy and

McGarvey (1996), which disregards uncertainty in estimation of Rλ. Abbreviations and

symbols are defined in Table 1.

Figure 5. Solid line: empirical probability density of Rλ = FMSY/Fnow from bootstrap fit
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of generalized production model to trimmed data on swordfish in north Atlantic Ocean.

Dashed line: normal probability density with equal mean and SD, shown for

comparison. Abbreviations and symbols are defined in Table 1.

Figure 6. Contours of Rτ (dimensionless target reference point in F expressed as a

proportion of current F ) for North Atlantic swordfish, calculated using REPAST with

normal uncertainties (Rλ = 0.833 with CV = 0.263). These computations are intended as

an illustration, not an authoritative analysis of swordfish. Abbreviations and symbols

are defined in Table 1.

Figure 7. Solid line: empirical probability density of Rλ = Bλ/Bnow from bootstrap fit of

generalized production model to trimmed data on swordfish in north Atlantic Ocean.

Dashed line: normal probability density with equal mean and SD, shown for

comparison. Abbreviations and symbols are defined in Table 1.

Figure 8. Contour of Rτ (dimensionless target reference point in biomass expressed as a

proportion of current B) for North Atlantic swordfish, calculated using REPAST with

normal uncertainties (Rλ = 1.06 with CV = 0.189). Contour lines are drawn at differing

intervals. These computations are intended as an illustration, not an authoritative

analysis of swordfish. Abbreviations and symbols are defined in Table 1.
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